Michael J. Flynn

Email: mflynn210@gmail.com Cell Phone: 603-714-1338

Focus Areas: Synthetic Biology and Systems Biology

Professional Summary

I am an Applied Physics Ph.D. specializing in Bioengineering. I have a multidisciplinary background in Physics, Computer Science, and Synthetic Biology. My most recent work is in miRNA circuits, where my collaborators and I developed a **toolkit of tunable**, **orthogonal synthetic miRNA incoherent feedforward loops**. We also **applied synthetic miRNA circuits to reduce MeCP2 overexpression** in Rett Syndrome gene therapy.

Education

2017-2025 Ph.D. in Applied Physics, Elowitz Lab, Caltech

2011-2015 B.A. Physics with Highest Honors; B.A. in Computer Science, Williams College

Professional Experience

Caltech 2018-2025

Graduate Student, Advisor: Michael Elowitz

- molecular cloning, flow cytometry, in-situ hybridization, computational image analysis in C++, data analysis in Python.
- Designed and engineered synthetic miRNA circuits
- Designed and engineered protease circuits, optimizing ability of such circuits to amplify signals.

Caltech 2017-2018

Graduate Student, Rotation Advisor: Paul Bellan

- Engineered x-ray spectrometer from digital camera to measure x-rays in magnetic reconnection experiment, which contributed to Marshall, Flynn, and Bellan (*Physics of Plasmas* 2018).

Hutchin Hill Capital 2015-2017

Analyst

- Daily rebalancing of portfolio with up to \$2 billion in assets.
- Wrote portfolio optimization code, including linear programming using R.
 Developed R Shiny dashboard for global portfolio.

Williams College 2014-2015

Undergraduate Research Assistant. Advisor: Daniel Aalberts

- Optimized algorithms to compute the partition function of RNA (secondary structure), and compute RNA secondary structure from this data.

Peer Reviewed Publications

Marshall, R. S., **M. J. Flynn**, and P. M. Bellan. "<u>Hard x-ray bursts observed in association with Rayleigh-Taylor instigated current disruption in a solar-relevant lab experiment." *Physics of Plasmas* 25, no. 11 (2018).</u>

Active Preprints

Flynn, Michael J.*, Acacia MH Mayfield*, Rongrong Du, Viviana Gradinaru, and Michael B. Elowitz. "Synthetic dosage-compensating miRNA circuits allow precision gene therapy for Rett syndrome." *BioRxiv* (2024). (in submission at *Cell Reports*)

Du, Rongrong*, **Michael J. Flynn***, Monique Honsa, Ralf Jungmann, and Michael B. Elowitz. <u>"miRNA circuit modules for precise, tunable control of gene expression."</u> *BioRxiv* (2024). (in submission at *Molecular Cell*)

Lu, Andrew, Lukas Moeller, Stephen Moore, Shiyu Xia, Kevin Ho, Evan Zhang, Mark W. Budde, Haley Larson, Ali Ahmed Diaz, Bo Gu, James M. Linton, Leslie Klock, **Michael J. Flynn**, Xiaojing J. Gao, Daniel J. Siegwart, Hao Zhu, Michael B. Elowitz. "Engineered protein circuits for cancer therapy" *BioRxiv* (2025). (in submission at *Nature*)

<u>Preprint-only (not submitted for review)</u>

Flynn, Michael J., Olga Snitser, James Flynn, Samantha Green, Idan Yelin, Moran Szwarcwort-Cohen, Roy Kishony, and Michael B. Elowitz. "A simple direct RT-LAMP SARS-CoV-2 saliva diagnostic." medRxiv (2020): 2020-11.

Flynn, Michael J. "RNA Macrostates and Computational Tools". Williams College 2015.

Patents

Flynn, Michael J., Michael B. Elowitz, Acacia Hori, Viviana Gradinaru. "Method of Robust Control of Gene Expression". USA Patent US20210171582A1. Provisional filed Nov. 22, 2019. Granted 2023-11-21.

Lu, Andrew C., **Michael J. Flynn**, Lucy S. Chong, Ronghui Zhu, Michael B. Elowitz. <u>"Protein-based signal amplification"</u>. USA Patent US20240124913A1. Provisional Filed Oct. 14, 2022. Pending.

Presentations

^{*} These authors contributed equally to the work

Flynn, Michael J. "A Synthetic miRNA IFFL Circuit Module for Rett Syndrome Gene Therapy". Powerpoint presentation. ASGCT Gene Targeting & Gene Correction: CNS, Los Angeles, 2023.

Trainees

Guided Rongrong Du in rotation through to Elowitz lab membership. Resulted in her co-first authorship in Du et al.

Grants Awarded

Rosen Bioengineering Center Pilot Grant Award 2019 Rett Syndrome Research Trust Private Grant Merkin Translational Research Grant Protein-level circuits RO1